Charge transport and rectification in molecular junctions formed with carbon-based electrodes.

نویسندگان

  • Taekyeong Kim
  • Zhen-Fei Liu
  • Chulho Lee
  • Jeffrey B Neaton
  • Latha Venkataraman
چکیده

Molecular junctions formed using the scanning-tunneling-microscope-based break-junction technique (STM-BJ) have provided unique insight into charge transport at the nanoscale. In most prior work, the same metal, typically Au, Pt, or Ag, is used for both tip and substrate. For such noble metal electrodes, the density of electronic states is approximately constant within a narrow energy window relevant to charge transport. Here, we form molecular junctions using the STM-BJ technique, with an Au metal tip and a microfabricated graphite substrate, and measure the conductance of a series of graphite/amine-terminated oligophenyl/Au molecular junctions. The remarkable mechanical strength of graphite and the single-crystal properties of our substrates allow measurements over few thousand junctions without any change in the surface properties. We show that conductance decays exponentially with molecular backbone length with a decay constant that is essentially the same as that for measurements with two Au electrodes. More importantly, despite the inherent symmetry of the oligophenylamines, we observe rectification in these junctions. State-of-art ab initio conductance calculations are in good agreement with experiment, and explain the rectification. We show that the highly energy-dependent graphite density of states contributes variations in transmission that, when coupled with an asymmetric voltage drop across the junction, leads to the observed rectification. Together, our measurements and calculations show how functionality may emerge from hybrid molecular-scale devices purposefully designed with different electrodes beyond the so-called "wide band limit," opening up the possibility of assembling molecular junctions with dissimilar electrodes using layered 2D materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arrays of high quality SAM-based junctions and their application in molecular diode based logic.

This paper describes a method to fabricate a microfluidic top-electrode that can be utilized to generate arrays of self-assembled monolayer (SAM)-based junctions. The top-electrodes consist of a liquid-metal of GaOx/EGaIn mechanically stabilized in microchannels and through-holes in polydimethylsiloxane (PDMS); these top-electrodes form molecular junctions by directly placing them onto the SAM ...

متن کامل

Charge Transport and Rectification in Donor−Acceptor Dyads

Organic, conjugated donor−acceptor (D−A) systems are essential components of photovoltaic devices. Design and optimization of D−A systems is typically based on trial-and-error experimentation methods that would benefit from fundamental physical insights on structure−function relationships at the molecular level. Here, we implement a nonequilibrium Green’s function methodology at the density fun...

متن کامل

Control over rectification in supramolecular tunneling junctions.

We report herein the concept of using a supramolecular platform on which dendrimers can be immobilized to result in tunneling junctions formed from assemblies with well-defined structures. In this way, the rectification can be controlled by changing only the chemical structure of the termini of the dendrimers, while minimizing the changes of the whole supramolecular assemblies. This method make...

متن کامل

Charge transport and rectification in arrays of SAM-based tunneling junctions.

This paper describes a method of fabrication that generates small arrays of tunneling junctions based on self-assembled monolayers (SAMs); these junctions have liquid-metal top-electrodes stabilized in microchannels and ultraflat (template-stripped) bottom-electrodes. The yield of junctions generated using this method is high (70-90%). The junctions examined incorporated SAMs of alkanethiolates...

متن کامل

Rectification in tunneling junctions: 2,2'-bipyridyl-terminated n-alkanethiolates.

Molecular rectification is a particularly attractive phenomenon to examine in studying structure-property relationships in charge transport across molecular junctions, since the tunneling currents across the same molecular junction are measured, with only a change in the sign of the bias, with the same electrodes, molecule(s), and contacts. This type of experiment minimizes the complexities ari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 30  شماره 

صفحات  -

تاریخ انتشار 2014